L R R
v

' CLEANest method for period analysis (Foster G., AJ Vol 109, Nr 4, April 1995
! "The cleanest Fourier spectrum")

' CLEANest is an effective method for removing false peaks from a power spectrum.
' It allows to describe and detect multiperiodic signals. It can be
' considered as an extension of the DCDFT method.

' Copyright 2005 The American Association of Variable Star Observers

' This code was partially funded by a Small Research Grant from the
'American Astronomical Society.

' The code is released for your use under the GPL 2.0 license. You can
'use it for noncommercial use with proper attribution and if you

'send a copy of your program to the AAVSO (aavso@aavso.org).

v

' Full license text is here: http:/www.gnu.org/licenses/gpl.txt

L B B B B B R R R R R R R R

Public NbrFrequencies As Integer

Dim PeakMatrix (NumberOfSignificantPeriods) As PeakMatElem 'Matrix with most significant peaks
Dim nDim As Integer, Poly As Integer

Const NMAXDIM = 50

Const NBEST = 20

Dim DVEC (NMAXDIM) As Double ' covariant vector

Dim DCOEF (NMAXDIM) As Double 'contravariant vector

Dim DMAT (NMAXDIM, NMAXDIM) As Double

Dim FreqToTest (NBEST) As Double

Dim DtZero As Double, DtScale As Double, DtCorr As Double, variance time As Double, DFourAmp2
As Double

Private Function GetTVec (jd As Double) As Double
GetTVec = jd - Int(a(l).jd)
End Function

Private Function TVEC(jd As Double) As Double
TVEC = GetTVec (jd) + DtCorr
End Function

Private Sub FunctionSpaceProjection (NbrFreqg As Integer, power As Double, amp2 As Double)
'perform function space projection and return Power = Theta

On Error GoTo ErrorHandler

Dim PowOfTime () As Double

Dim RadianFreqg() As Double

Dim CosMatrix () As Double

Dim SinMatrix () As Double

Dim n As Integer, nl As Integer, n2 As Integer, nf As Integer, nf2 As Integer, nDim As
Integer

Dim NP As Integer

Dim dPower As Double

Dim Weight As Double, Amp As Double

Dim DT As Double, dx As Double, dphase As Double

ReDim PowOfTime (Poly): ReDim RadianFreq(NbrFreq): ReDim CosMatrix (NbrFreq): ReDim
SinMatrix (NbrFreq)
nDim = Poly + 2 * NbrFreqg '+ NBIAS



Weight = 0
For nl = 0 To nDim
DVEC (nl) = 0
For n2 = 0 To nDim
DMAT (nl, n2) = 0
Next n2
Next nl
For nf = 1 To NbrFreq
RadianFreqg(nf) = 2 * PI * FreqToTest (nf) * DtScale
For nf2 = nf + 1 To NbrFreq
If Abs (FreqToTest (nf) - FreqToTest (nf2)) < 0.00000001 Then
dPower = 0: power = 0: amp2 = 0
Exit Sub
End If
Next nf2
Next nf
PowOfTime (0) = 1
For n = 1 To BigN
Weight = Weight + 1
DT = TVEC (a(n) .jd)
DT = (DT - DtZero) / DtScale
dx = a(n).mag
' Compute powers of time

For NP 1 To Poly
PowOfTime (NP) = PowOfTime (NP - 1) * DT
Next NP

v

Compute trig functions

For nf 1 To NbrFreq
dphase = RadianFreqg(nf) * DT: CosMatrix(nf) = Cos(dphase): SinMatrix(nf) =
Sin (dphase)
Next nf

' Compute matrix coefficients for polynomials

For NP = 0 To Poly

DMAT (0, NP) = DMAT (0, NP) + PowOfTime (NP)

If NP > 0 Then DMAT (NP, Poly) = DMAT (NP, Poly) + PowOfTime (NP) *
PowOfTime (Poly)

DVEC (NP) = DVEC(NP) + dx * PowOfTime (NP)

n2 Poly

v

Compute matrix coeff for products of polynomials with trig functions
For nf = 1 To NbrFreq
n2 = n2 + 2

DMAT (NP, n2 - 1) = DMAT (NP, n2 - 1) + PowOfTime (NP) * CosMatrix (nf)
DMAT (NP, n2) = DMAT (NP, n2) + PowOfTime (NP) * SinMatrix (nf)
Next nf
Next NP
' Compute matrix values for products of trig functions
nl = Poly
For nf 1 To NbrFreq

n2 = nl: nl = nl + 2
DVEC(nl - 1) = DVEC(nl - 1) 4+ dx * CosMatrix (nf)
DVEC (nl) = DVEC(nl) + dx * SinMatrix(nf)
For nf2 = nf To NbrFreq
n2 = n2 + 2

DMAT (nl - 1, n2 - 1) = DMAT(nl - 1, n2 - 1) 4+ CosMatrix(nf) *
CosMatrix (nf2)
DMAT (nl - 1, n2) = DMAT(nl - 1, n2) + CosMatrix(nf) * SinMatrix(nf2)
DMAT (nl, n2 - 1) = DMAT(nl, n2 - 1) + SinMatrix(nf) * CosMatrix(nf2)
DMAT (nl, n2) DMAT (nl, n2) + SinMatrix(nf) * SinMatrix (nf2)
Next nf2
Next nf

Next n
For nl = 1 To Poly - 1
For n2 = nl To Poly - 1
DMAT (nl, n2) = DMAT(nl - 1, n2 + 1)
Next n2
Next nl
For nl = 0 To nDim
DVEC (nl) = DVEC(nl) / Weight
For n2 = nl To nDim
DMAT (nl, n2) = DMAT(nl, n2) / Weight
Next n2
Next nl
DMAT (0, 0) = 1
For nl = 1 To nDim
For nZ = 0 Tonl -1
DMAT (nl, n2) = DMAT (n2, nl)
Next n2



Next nl
InvertMatrix DMAT, nDim

amp2 = 0
For nl = 0 To nDim
DCOEF (nl) = 0
For n2 = 0 To nDim
DCOEF (nl) = DCOEF(nl) + DMAT(nl, n2) * DVEC(n2)
Next n2
amp2 = amp2 + DCOEF (nl) * DVEC(nl)
Next nl

amp2 = amp2 - mean mag "~ 2
If amp2 < 0 Then amp2 = 0
dPower = 0
If nDim > 0 Then dPower = (BigN - 1) * amp2 / variance mag / nDim
' Compute FOURIER power, amp”2
power = (BigN - 1) * (amp2 - DFourAmp2) 'DFPOW
power = power / (variance mag - DFourAmp2) / 2
ErrorHandler:
End Sub

Private Sub CLEANest Resolve (ddr As Double, ddp As Double)
On Error GoTo ErrorHandler
Dim Nexp As Integer
If ddr = 0 Then Exit Sub
Nexp = 0
If ddr < 1 Then
Do Until ddr > 1
ddr = ddr * 10: Nexp = Nexp - 1
Loop
Else
Do Until ddr < 10
ddr = ddr / 10: Nexp = Nexp + 1
Loop
End If
Select Case ddr
Case 1 To 2
ddr =1
Case 2 To 5
ddr = 2
Case Else
ddr =
End Select
ddr = ddr * 10 ~ Nexp: ddp = ddp / ddr: ddp = ddr * Int(ddp + 0.5)
ErrorHandler:
End Sub

wl

Public Sub SLICK AskFregRange ()
On Error GoTo ErrorHandler
Dim Precision As Integer, temp As String, leftval As Double, rightval As Double
CLEANestParamSetFormVisible = True
CLEANestParamSetForm.SystemGeneratedClick = True
CLEANestParamSetForm.ShowPeriodOptions = False
CLEANestParamSetForm.CLEANest AskFregRangeMode = True
CLEANestParamSetForm.PerWinSourceForAIs Me
CLEANestParamSetForm. Show
If TimeData Then
CLEANestParamSetForm.Option2.value = True
leftval = 1 / finalfreq: rightval = 1 / firstfreq
If leftval > rightval Then Swap leftval, rightval
Else
leftval = firstfreq: rightval = finalfreq
CLEANestParamSetForm.Optionl.value = True
End If
Precision = FloatingPointResolution(rightval - leftval) + 1
RoundValueToExactDecimals leftval, Precision, temp
CLEANestParamSetForm.Textl.Text = Trim(temp)
RoundValueToExactDecimals rightval, Precision, temp
CLEANestParamSetForm.Text2.Text = Trim(temp)
CLEANestParamSetForm.Text3.Text = resolution

If Val (CLEANestParamSetForm.Textl.Text) = 0 Then CLEANestParamSetForm.Textl.Text = "0.01"
If Val (CLEANestParamSetForm.Text2.Text) = 0 Then CLEANestParamSetForm.Text2.Text = "0.01"
CLEANestParamSetForm.SystemGeneratedClick = False

ErrorHandler:

End Sub

Public Sub CloseCLEANestParamSetForm()
On Error GoTo ErrorHandler



CLEANestForm.HideFixedPeriodForm
If CLEANestParamSetFormVisible Then
CLEANestParamSetFormVisible = False
CLEANestParamSetForm.Hide
End If
ErrorHandler:
End Sub

Public Sub UpdateOverlays ()

If Me.ModelFunctionVisible Then ParentObsWin.UpdateOverlay ModelFunctionId,
CLEANestForm.ModelFunctionColor, CLEANestForm.ModelFunctionLineWidth

If Me.ResidualsVisible Then ParentObsWin.UpdateOverlay ResidualsId,
CLEANestForm.ResidualsColor, CLEANestForm.ResidualsLineWidth
End Sub

Public Sub RefreshOverlayInfo ()
'will check if the Overlays (mentioned in CLEANest) are still alive. Could have been
deleted
'through the parent ObsWin Overlays form
If Not ParentObsWin.OverlayExists (Me.ResidualsId) Then
Me.ResidualsVisible = False
End If
If Not ParentObsWin.OverlayExists (Me.ModelFunctionId) Then
Me.ModelFunctionVisible = False
End If
End Sub

Public Sub CLEANestAddFixedFrequency (FregVal As Double)
On Error GoTo ErrorHandler
Dim i As Integer, foo As Double
For i = NumberOfSignificantPeriods To 2 Step -1
PeakMatrix (i) .freq = PeakMatrix (i - 1).freqg
PeakMatrix (i) .power = PeakMatrix(i - 1) .power
PeakMatrix (i) .Visible = PeakMatrix(i - 1).Visible
PeakMatrix (i) .detailed info = False
Next i
PeakMatrix (1) .freq = FreqgVal
PeakMatrix (1) .Visible = False
'NbrFrequencies = 1
FreqToTest (NbrFrequencies) = FregVal
'FunctionSpaceProjection nbrfrequencies, PeakMatrix(l) .power, foo
CLEANest CalculateDetailedPeakInfo NbrFrequencies, PeakMatrix(l).power, foo
PublishPeriods
ErrorHandler:
End Sub

Public Sub CLEANest SLICKScan() 'perform SLICK using Foster CLEANest approach
On Error GoTo ErrorHandler
Dim power As Double, amp2 As Double
CLEANestForm.SetCommandButtonsVisibility False
CLEANest CalculateDetailedPeakInfo NbrFrequencies, power, amp2
DFourAmp2 = amp2
NbrFrequencies = NbrFrequencies + 1
CLEANest InitProgressBar
PerWinForm.P XAxisMin = firstfreq
PerWinForm.P_XAxisMax = finalfreq
PerWinForm.UpdatePerWinForm
Core Period Analysis 0, 0
DFourAmp2 = 0
If Not AnalysisCanceled Then
Me.ShowCLEANestForm
CLEANestForm.PublishedPeriods
End If
ErrorHandler:
If CLEANestFormVisible Then CLEANestForm.SetCommandButtonsVisibility True
End Sub

Private Sub CLEANest InitProgressBar ()
ProgressBarForm. SetParentPerWinForm Me, PerWinForm
ProgressBarForm.ProgressBarl.Min = firstfreq
ProgressBarForm.ProgressBarl.Max = finalfreqg
ProgressBarForm.PermLabel = ""
ProgressBarForm.CancelAnalysisButton.Caption = "Cancel"
ProgressBarForm.PermLabel = ""
Me.AnalysisCanceled = False
ProgressBarForm. Show

End Sub



Public Sub CLEANest CLEANestScan() 'perform multi period scan using Foster CLEANest approach
On Error GoTo ErrorHandler
Dim n As Integer, power As Double, Dango As Double, dBPower As Double
Dim dLPower As Double, dlFreqg As Double, amp2 As Double
Dim dTest () As Double, dres() As Double, Nvary As Integer, counter As Long
Dim nSofar As Integer, nV As Integer, nVLast As Integer, nChange As Integer
ReDim dTest (NbrFrequencies): ReDim dres (NbrFrequencies)
counter = 0: CLEANestForm.Enabled = False
MainForm.MousePointer = vbHourglass
Dango = 1 / Sqgr(l2 * variance time) / 4
For n = 1 To NbrFrequencies
dTest (n) = 1 / FreqToTest (n)
dres(n) = (Dango * dTest(n) ~ 2) / 10
CLEANest Resolve dres(n), dTest(n)
Next n
Nvary = NbrFrequencies ' number VARIABLE frequ/per
dBPower = 0
' Perform multi-scan. STEP 1 : COMPUTE BASE LEVEL
For n = 1 To NbrFrequencies
FreqToTest (n) = 1 / dTest (n)
Next n
CLEANestForm.CLEANestProgressLabel.Caption = "Computing base level..."
CLEANestForm.CLEANestProgressLabel.Visible = True
CLEANestForm.Refresh
FunctionSpaceProjection NbrFrequencies, power, amp2

dBPower = power ' set base level for power

If dBPower = 0 Then dBPower = 1

nSofar = 0: nChange = 0: nV = 0: nVLast = 0 ' last changed frequ
' STEP 2. REFINE THE PERIODS

Do

If nChange < 0 And nVLast > 0 Then
Swap nV, nVLast

Else
If nChange < 0 Then nVLast = nV
nv nv + 1
If nV > Nvary Then nvV = 1

End If

nChange = 0 ' init to NO CHANGE

' STEP 3. TEST HIGHER PERIODS

Do

counter = counter + 1

dTest (0) = dTest (nV) + dres(nV)

FreqgToTest (nV) = 1 / dTest (0)

If (counter Mod 10) = 0 Then
CLEANestForm.CLEANestProgressLabel.Caption = "Testing periods [" +

Trim(Str (counter)) + "]"

CLEANestForm.Refresh

End If

FunctionSpaceProjection NbrFrequencies, power, amp2

If power > dBPower Then ' if better then

dBPower = power ' save new ampl.
dTest (nV) = dTest (0) ' save new per.
nChange = -1 ' mark CHANGED
nSofar = -1 ' mark CHANGED
Else
power = 0
End If

Loop Until power < dBPower
If nChange = 0 Then
' STEP 4. TEST LOWER PERIODS

Do
counter = counter + 1
dTest (0) = dTest (nV) - dres (nV)
FreqToTest (nV) = 1 / dTest (0)
If (counter Mod 10) = 0 Then

CLEANestForm.CLEANestProgressLabel.Caption = "Testing periods [" +
Trim(Str (counter)) + "]"
CLEANestForm.Refresh
End If
FunctionSpaceProjection NbrFrequencies, power, amp?2
If power > dBPower Then ' if better

dBPower = power ' save ampl.
dTest (nV) = dTest (0) ' save per.
nSofar = -1 ' mark CHANGED
nChange = -1 ' mark CHANGED

Else



power = 0
End If
Loop Until power < dBPower
End If
FreqToTest (nV) = 1 / dTest (nV)
nSofar = nSofar + 1

Loop Until nSofar >= Nvary
' Save best set to table
dLPower dBPower
For n 1 To NbrFrequencies
dlFreq 1 / dTest (n)
AddToPeakTable dlFreq,
Next n
CLEANest CalculateDetailedPeakInfo NbrFrequencies,
CLEANestForm.CLEANestProgressLabel.Visible False
Me.ShowCLEANestForm
ErrorHandler:
CLEANestForm.Enabled
MainForm.MousePointer
End Sub

dLPower

True
vbNormal

Private Sub CLEANestSmooth (Dtime As Double,
On Error GoTo ErrorHandler
Dim DT As Double, NP As Integer,
DT (Dtime - DtZero) / DtScale
Dmag DCOEF (0)
For NP 1 To Poly

Dmag Dmag + DCOEF (NP)

Next NP
n2 Poly
For nf

n2 As Integer,

~

* DT NP

= 1 To NbrFrequencies
n2 n2 + 2
dphase 2 * PI * FreqToTest (nf)
Dmag = Dmag + DCOEF (n2 - 1)
Dmag Dmag + DCOEF (n2)

Next nf
ErrorHandler:
End Sub

* Cos (dphase)
* Sin (dphase)

'this is a significant peak,

Dmag As Double)

dphase As Double,

so at it to the table

dBPower, amp2

'Compute value of Model function

nf As Integer

* DtScale * DT

Public Sub CLEANest WriteResidualsToFile(FileName As String)

On Error GoTo ErrorHandler

Dim DT As Double, dx As Double,
Open FileName For Output As #1
' Compute coefficients

power As Double,

FunctionSpaceProjection NbrFrequencies, power, amp?2
' Compute residuals
For n = 1 To BigN
DT = TVEC (a(n) .jd)
CLEANestSmooth DT, dx
RoundValueToExactDecimals a(n).jd, 4, temp
Print #1, Trim(temp) + vbTab;
RoundValueToExactDecimals a(n) .mag - dx, 4,
Print #1, Trim(temp) + vbTab;
RoundValueToExactDecimals a(n).mag, 4, temp
Print #1, Trim(temp) + vbTab;
RoundValueToExactDecimals dx, 4, temp
Print #1, Trim(temp)
Next n
ErrorHandler:
Close #1
End Sub

Public Sub ShowModelFunction (vColor As Long,
On Error GoTo ErrorHandler

amp2 As Double,

vLineWidth As Integer,

n As Long, temp As String

temp

vPerWinID As String)

Dim DT As Double, dx As Double, power As Double, amp2 As Double, n As Long
Dim x() As Double, y() As Double
' Calculate model function that fits the selected periods
FunctionSpaceProjection NbrFrequencies, power, amp2
ReDim x (BigN + 1): ReDim y(BigN + 1)
For n = 1 To BigN

DT = TVEC(a(n).jd)

CLEANestSmooth DT, dx

x(n) = a(n).jd: y(n) = dx
Next n
'Then store the model function as an Overlay for ObsWin
ParentObsWin.ShowModelFunction x, y, BigN + 1, vColor, vLineWidth, vPerWinID,

ModelFunctionId 'returns unique id of model function



ModelFunctionVisible = True
ErrorHandler:
End Sub

Public Sub HideModelFunction ()
On Error GoTo ErrorHandler
If ModelFunctionVisible Then
ParentObsWin.HideModelFunction ModelFunctionId
ModelFunctionVisible = False
End If
ErrorHandler:
End Sub

Public Sub ShowResiduals (vColor As Long, vLineWidth As Integer, vPerWinID As String)
On Error GoTo ErrorHandler
Dim DT As Double, dx As Double, power As Double, amp2 As Double, n As Long
Dim x () As Double, y() As Double
' Calculate residuals using the selected periods
FunctionSpaceProjection NbrFrequencies, power, amp?2
ReDim x (BigN + 1): ReDim y(BigN + 1)
For n = 1 To BigN
DT = TVEC (a(n) .jd)
CLEANestSmooth DT, dx
x(n) = a(n).jd: y(n) = a(n).mag - dx + mean mag
Next n
'Then store the model function as an Overlay for ObsWin
ParentObsWin.ShowResiduals x, y, BigN + 1, vColor, vLineWidth, vPerWinID, ResidualsId
'returns unique id of residuals
ResidualsVisible = True
ErrorHandler:
End Sub

Public Sub HideResiduals ()
On Error GoTo ErrorHandler
If ResidualsVisible Then
ParentObsWin.HideResiduals ResidualsId
ResidualsVisible = False
End If
ErrorHandler:
End Sub

Public Sub CLEANest CalculateDetailedPeakInfo (NbrFrequencies As Integer, power As Double, amp2
As Double)
On Error GoTo ErrorHandler
Dim n As Long, temp As String, i As Integer, dd As Double
Dim nb As Integer, na As Integer, DT As Double, dres As Double, dz As Double, dalpha As
Double, dbeta As Double
Dim dper As Double, dsigfre As Double, dsigper As Double, dphase As Double, sdv As Double
' Compute coefficients
FunctionSpaceProjection NbrFrequencies, power, amp2
nb = Poly
For 1 = 1 To NbrFrequencies
nb = nb + 2: na = nb -1
dd = DCOEF (na) ”~ 2 + DCOEF (nb) ~ 2
PeakMatrix (i) .ampl = Sqr (dd)
PeakMatrix (i) .sIni = DCOEF (nb)
PeakMatrix (i) .cosi = DCOEF (na)

Next i

DT = a(BigN).jd - a(l).3jd

dres = stdev_mag * 2

dres = dres * ((BigN - 1) - (2 * power))

dres = dres / (BigN - 1 - (3 * NbrFrequencies))

If dres < 0 Then dres = 0
dres = SquareRoot(dres): dz = 2 / BigN: dalpha = dres * SquareRoot (dz)
dz = 6 / BigN: dbeta = dres * SquareRoot (dz) / DT / PI
dalpha = 2 * dalpha: dbeta = 2 * dbeta
For i = 1 To NbrFrequencies
dper = 1 / PeakMatrix(i).freq
dsigfre = dbeta / PeakMatrix (i) .ampl
dsigper = dsigfre * dper * dper
If PeakMatrix (i) .cosi <> 0 Then

dz = -PeakMatrix(i).sIni / PeakMatrix (i) .cosi
dphase = Atn(dz)
dphase = arctan(-PeakMatrix(i).sIni, PeakMatrix (i) .cosi)

dphase = dphase / 2 / PI
ElseIf PeakMatrix (i) .sIni > 0 Then
dphase = -0.25



Else
dphase = 0.25
End If
If PeakMatrix (i) .cosi < 0 Then dphase = dphase + 0.5
If dphase < 0 Then dphase = dphase + 1
PeakMatrix (i) .freqgerr = Abs (dsigfre)
PeakMatrix (i) .pererr = Abs (dsigper)
PeakMatrix (i) .amplerr = Abs (dalpha)
PeakMatrix (i) .Phase = dphase
PeakMatrix (i) .detailed info = True
Next i
ErrorHandler:
End Sub

Private Sub CLEANest calculate theta(f As Double, theta As Double)

On Error GoTo ErrorHandler

'For a given frequency f, calculate the Theta value using the DCDFT method of Foster

Dim na As Integer, nb As Integer, dd As Double, amp2 As Double, Damp As Double

Static Dlamp As Double, Dllamp As Double, dlFreq As Double, dLPower As Double 'these static
vars are used to keep previous peak values. When looking for peaks, you only know a value was
a peak, when you just passed it

FreqToTest (NbrFrequencies) = f

FunctionSpaceProjection NbrFrequencies, theta, amp2 'Fourier transform. Theta contains
Power value

Damp = Sqr (2 * (amp2 - DFourAmp2))

na = Poly + 1: nb = na + 1

dd = Sgr (DCOEF (na) ~ 2 + DCOEF (nb) *~ 2) 'Ampl

If Damp < Dlamp And Dlamp >= Dllamp Then AddToPeakTable dlFreq, dLPower 'this is a
significant peak, so at it to the table

Dllamp = Dlamp: Dlamp = Damp: dlFreq = f: dLPower = theta

'Theta = dd 'plot amplitude
ErrorHandler:
End Sub

Public Sub InitCommonCLEANestVariables ()
'initialise common variables
Dim dtspan As Double, x As Double, tresolv As Double, dd As Long
Poly = 0: NbrFrequencies = 1: DFourAmp2 = 0

End Sub

Public Sub Cleanest Analysis(fl As Double, f0 As Double, df As Double)
On Error GoTo ErrorHandler
AnalysisMethod = cCleanestAnalysis
CommonPeriodAnalysisInitialiser f1, £0, df, True
InitCommonCLEANestVariables
Core Period Analysis 0, 0

ErrorHandler:

End Sub



