How stars make dust

AAVSO Annual Meeting Nantucket MA October 2008 Mira Variables are Dust Factories for the galaxy

• They have IR excesses at 10-13 μ

 They have high-momentum winds possible only with dust

2006: A problem!

Models for dusty winds from Carbon stars (C>O) appeared OK (although they required high C/O and large luminosity) but
Same codes applied to M and S stars predicted no winds could be driven.

Discovered independently by S. Höfner and P. Woitke

About the chemistry

- In equilibrium below about 4000K, C and O prefer to be CO
- For M stars, O > C and O is left over
- For C stars, C > O and C is left over
- For S stars, C = O and nothing is left over
 Dust forms from what is left after CO forms

About the chemistry

Observed: M, S, and C stars have similar, dusty winds.
How do the S stars do it?
What does that mean for M and C stars?

Shocks allow S stars to form dust

 In pulsating stars (the ones with dusty winds, the Miras), shocks break up H₂ and CO.

Therefore:

We have extra O and some C in M stars, extra C and some O in C stars, and some C and some O in S stars, to make dust from C₂H₂, Al₂O₃, and SiO.

Calculation by James Pierce 2008; model does not include dust

Once a tiny silicate grain forms, it can grow by accreting C from the CO, according to experimental results by Nuth, Johnson & Manning 2008

 This lets us use some of the C that we thought was locked away out of reach in CO

This is important because small silicate grains are not opaque enough to drive material off these stars

Small carbon grains are able to drive mass loss

The models for C* that didn't work for M and S stars assumed

- Standard nucleation theory (SNT)
 Equilibrium chemistry in the grain
 - forming region
- 3. Grain opacity for absorption (not scattering) carbon grains are black

Changing 3 may suffice, but in the mean time we learned more about 1 and 2.

Near saturation, only very large solids grow - so how does the process get started??

- Two options:
- Grow on an existing solid, or wait until the vapor is super-saturated.

IN STARS ... SUPERSATURATION

- The higher the supersaturation, the smaller the particles that can grow.
- There is a critical cluster size, with N=N* atoms, that is stable.
- Clusters with N>N* grow. Clusters with N<N* are more likely to shrink than grow.
- An equilibrium for N<N* is possible, with more clusters of size N than of size N+1.

Standard nucleation theory

- Compute N* from surface tension
- Assume N<N* are in equilibrium
- Higher supersaturation (usually, faster cooling) => N* is smaller
- Smaller N* => more grains get to N*
- $N \ge N^*$ grow until the material is all in grains.
- Higher supersaturation -> more, smaller grains

Slow cooling => slight supersaturation => fewer, bigger grains

How to get high opacity from the grains: there is an optimal size

If they are opaque, many small grains intercept more light than a few large ones with the same total mass.

However, if the grains are too small, they will be transparent and intercept less light.

Problems with SNT for stars

- Calculations make use of macroscopic properties surface tension etc.
- In stars, N* turns out to be ≤10 or so lumpy & all atoms on the surface
- Also, at high supersaturation, N<N* don't achieve equilibrium concentrations

Chesnokov et al 2007 model for nucleation and growth at high supersaturation

The problem was:

Not enough dust opacity in M stars and no dust expected in S stars, but M, S, and C stars have similar winds

We found 3 solutions to the problem:

- 1. Big silicate grains work via scattering in M stars.
- Non-equilibrium chemistry => more
 C and O available to make grains.
- 3. Silicate and carbon grains can steal C from CO.

And also learned that the underlying Standard Nucleation Theory has some inconsistencies when applied to stars.

