
Chapter 13: Variable  Stars  and O–C  Diagrams 
 

 
Introduction 
 
In the previous chapter we stated that a 
perfectly periodic system repeats exactly 
the same behavior, over and over again. 
Every cycle is precisely like every other 
cycle. Some variable stars actually behave 
this way: Cepheid variables, for example, 
may repeat precisely the same brightness 
variations for thousands of cycles. 
Eclipsing binaries also sometimes repeat 
thousands of cycles, with exactly the same 
period every time. 
 
Other variables are not quite so reliable. 
While they do go through an almost never-

ending series of ups and downs, each cycle is a little different from every other cycle; the 
period will be slightly longer or shorter, and the maximum and minimum magnitudes will 
be slightly brighter or fainter. You probably noticed in the last chapter that the light curve 
of the Mira-type variable V Cas showed slight differences from cycle to cycle. It keeps 
brightening and dimming, so it definitely appears to be periodic, but it is not perfectly 
periodic. 
 
In fact, all Mira-type variables behave this way. They are periodic, because they keep 
repeating cycles over and over again. But they are not perfectly periodic, because every 
cycle is a little different. For Mira-type variables, the differences from cycle to cycle are 
small. The period, for instance, will be a little different for each cycle, but is usually 
within 10% of its average value. The amplitude of each cycle (the difference between 
minimum and maximum brightness) will usually be within 20% of its average value. 
Each cycle in the light curve looks a bit different, but they all have many similarities as 
well, and they are usually close to the “average shape” of the light curve. 
 
Another class of variables, known as the semiregular variables, show even greater 
differences from cycle to cycle. Not only are their periods not perfectly periodic, but 
these stars also sometimes “switch” from one period to another (a process known as mode 
switching). Their amplitudes change dramatically: they may suddenly increase their 
variability, or they may stop varying altogether (but when they do, they usually start up 
again soon after). 
 
It is easy to see the differences from cycle to cycle in the light curves of Mira- and 
semiregular-type variables. The light curves of Cepheids show what appear to be 
identical cycles. But if we watch Cepheids long enough—for tens of thousands of 
cycles—we can detect very slight changes in their cycles as well. They too can show 
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changes in the cycle shape, the amplitude, and the period. The differences are still there: 
even the Cepheids are not perfectly periodic. 
 
Pulsating Stars 
 
When the first Mira-type variables were discovered, it was a mystery why they were 
varying at all. After all, most stars, like our own Sun, are quite stable, not variable (even 
the Sun varies a little bit, but surprisingly little). In the early part of this century, the 
famous English astronomer Arthur Eddington studied the problem carefully. Most known 
ways that stars can vary could be eliminated from consideration. For example, Mira-type 
variables were not exploding like supernovae: their fluctuations are too regular for that. 
And they were not eclipsing like the eclipsing binaries: their fluctuations are not nearly 
regular enough for that. 
 
Eddington went back to the basics. Stars glow like the filament of a light bulb for the 
same reason—because they are hot. The light output of a star depends mainly on two 
things: its surface temperature (how bright the light bulbs are) and its size (how many 
light bulbs are burning). The apparent visual magnitude of Mira itself is 100 times 
brighter at maximum than at minimum. To be so much brighter, it would either have to 
be hotter, or bigger, or both. 
 
By studying the spectra of stars, we can get a good estimate of their temperatures. The 
spectrum of Mira throughout its cycle does change, and in fact Mira will show 
temperature changes while it fluctuates, but these temperature changes are just too small 
to explain the tremendous increase and decrease in brightness. That leaves only one 
possibility, said Eddington: Mira changes its brightness by a large amount every cycle 
because Mira changes its size by a large amount every cycle. Mira (and all Mira-type 
variables) fluctuate because they are expanding and contracting, growing and shrinking. 
The star is literally “vibrating.” Variables that do this are known as pulsating variables. 
 
We now know that there are many types of pulsating variables. Cepheids, for example, 
are very regular pulsating variables, usually with periods of a few days or more. Mira-
type variables also pulsate, but their periods are almost always more than 100 days, and 
their pulsations are much more irregular from cycle to cycle than those of Cepheid 
variables. Semiregular variables pulsate with periods from as little as 30 days to over 
1,000 days, and their pulsations are even more irregular than those of Mira-type 
variables. 
 
Period 
 
Eddington’s “back-to-basics” approach was appropriate. After all, the stars are so far 
away that we have to stretch ourselves just to uncover their basic physical properties. The 
most important physical parameters of a star are its size (the radius) R, its surface 
temperature T, and its mass M. 
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Unfortunately, we cannot measure these basic quantities directly. The easiest to estimate 
is the temperature. The spectrum of the star acts almost like a thermometer to give us a 
good estimate of the temperature, and other clues enable us to refine this estimate. The 
radius can be quite difficult to determine, because the stars are so far away that we cannot 
really see their images directly (except in a few special cases). Still, if we know the star’s 
distance from earth, its brightness, and its temperature, we can get a reasonable size 
estimate. Of all the “basic parameters,” the most difficult to estimate is the mass: too 
often we simply have no clues, and our best mass estimate is likely to be very unreliable. 
 
There are exceptions. Binary stars orbit each other, and their orbits are determined by the 
laws of gravity. The strength of gravity depends on mass, so if we know all the details of 
the orbital motion of a binary star, we can get a very good mass estimate. That is one of 
the reasons eclipsing binary stars are so important: the details of their orbital cycles 
enable us to determine stellar masses. Unfortunately, this can be applied only to a few 
stars. 
 
Another exception is pulsating stars. The period of a pulsating star depends mainly on its 
basic physical parameters of size, temperature, and mass. So if we know the period, we 
have one more clue to help us estimate mass. In fact, the period of a pulsating star can 
give us clues about its mass, the strength of its gravity, and sometimes even the reactions 
taking place in the star’s interior. 
 
According to our theories of stellar structure, if a star is pulsating, its period in most cases 
will be stable. The period may change from cycle to cycle (as with Mira-type variables), 
but the average period over many cycles will remain the same. For the average period to 
change, we would have to change the star’s mass, size, or temperature (none of which is 
very likely), or we would have to change the internal workings of the star. Such changes 
do occur, but they usually happen only at important stages in the star’s life cycle. So 
when a pulsating star shows a change in its average period, it usually means that the star 
is undergoing an evolutionary change in its behavior, moving from one stage in its life 
cycle to the next. 
 
We see that the period of a variable star is one of the most revealing aspects of its 
variations. It is something that we can obtain through careful observation. The average 
period gives us vital clues about a star’s basic properties, including mass and gravity. 
Any period changes are a warning that the star may be entering an important new stage of 
its development. And this is true not just for pulsating variables: for any periodic variable 
star, the period is one of the most important and most informative of its observable 
parameters. Because of this, studying the periods of variable stars, and especially any 
changes in their periods, is an especially important part of the analysis of variable stars. 
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O–C  
 
One very useful tool for finding period changes, and one which is very popular with 
astronomers, is to compute what is called “O–C” (“O minus C”). It is based on the 
following idea: if a star is perfectly periodic, then every period is exactly the same. In that 
case, we can predict its cycles in advance. If one maximum occurs on, say, JD 2,450,000, 
and the period is precisely 332 days (and never changes!), then the next maximum will 
occur on JD 2,450,332. This is not just guesswork: it is based on the way periodic 
systems behave. This is how scientific predictions are made: by combining a precise 
theory of behavior (perfect periodicity) with accurate parameters (the epoch, or time of 
maximum, and the period) determined from precise observations (made by careful 
variable star observers), we can predict the behavior of a star in advance. Then we can 
perform what may be the most powerful test in all of science: we can compare our 
predictions with future observations. 
 
If the star is perfectly periodic, has a maximum at time to (the epoch), and the period is P, 
then we know that the next maximum will occur at time to + P. The next maximum after 
that will be at time to + 2P, then next at to + 3P, etc. In fact, if we choose to, our epoch, to 
be the time of maximum for cycle number zero, then the computed time of maximum for 
any cycle number n, which we can call Cn, is easy to calculate: 
 

Cn = to + nP. 
 
With this one formula, we can compute the times of all maxima, past, present, and future. 
 
Of course, these times are correct only if the system is perfectly periodic. In addition to 
the computed times of maximum Cn, we can also directly observe the star to estimate the 
observed time of maximum for cycle number n, which we will call On. You have already 
done this in previous chapters, estimating the time of maximum either by eye, or by 
fitting a polynomial to the light curve data. We are now ready to compare theory (the 
computed times Cn) to observation (the observed times On), by simply taking the 
difference between the observed and computed times of maxima. These are the “O–C,” 
or “observed minus computed” values. For each cycle number n, we have (O–C) n = On - 
Cn. After we have determined the O–C values, we can plot O–C as a function of cycle 
number n. This gives us a powerful tool for period analysis: the O–C diagram. 
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Investigation 13.1: Constructing an O-C Diagram 
 

 
Your teacher will assign you a system to observe by timing. For example, you may be 
asked to time when the street light changes from red to green, or when the next 
commercial starts on a TV show. What you will end up with are a set of observed times, 
the times at which the “important event” (whatever you are assigned to observe) has 
occurred. You should have observed ten occurrences (ten cycles) of this system. 
 
1. Make a table to list all your observations, leaving space for 4 columns. Enter your 

actual observations in column 2. 
 
2. Number your observations, starting with zero (astronomers and mathematicians often 

like to start numbering things at zero rather than one). These are the cycle numbers n 
for your observations. The observations themselves are the observed values On. Enter 
the cycle numbers in column 1 of your table. If you have observed 10 cycles, and start 
numbering them from zero, then your cycle numbers n will range from 0 to 9. 

 
3. Take the observed time of your very first observation as the estimated epoch to. 
 
4. Compute the difference between the first two observed times by subtracting the 

second from the first. Take this as your estimated period P. 
 
5. Using your epoch to and period P, calculate the computed time Cn for each cycle you 

have observed. Enter these values in column 3 of your table. 
 
6. For each cycle n, subtract the computed time Cn from the observed time On, which 

will give you the O\–C values. Enter these O–C values in column 4 of your table. 
Note: Because you took the first observation as your estimated epoch, the first O-C 
value will always be zero. Because you also took the time between the first two 
observations as your estimated period, the second O–C value will also always be 
zero. 

 
7. Plot a graph with cycle number n on the x-axis and O–C value on the y-axis. 
 
 
What does the O–C diagram tell you? Is this system perfectly periodic? Is your estimated 
period correct? 
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O–C Diagrams 
 
To find out how O–C diagrams behave, let us construct some—for a set of six clocks. 
Actually, we will use seven clocks. One of them is a precise atomic clock, pre-set by the 
National Bureau of Standards. We will not actually test this clock, but rather we will use 
it to define the correct time. The other six are our “test clocks,” and we will observe their 
behavior to construct O–C diagrams. 
 
To create an O–C diagram, we need to define C, the computed time. So we will take as 
our theory that the test clocks are all perfectly periodic, with a period of 1 day, and that 
they are set correctly. Each day, we will observe the time at which our test clocks read 
“noon.” We agree to take noontime on the first day of our test as the zero point of time (at 
which t =0). In this case, when cycle zero begins, with each clock reading “noon” on our 
first test day, according to our theory it will actually be noon. 
 
So the computed time of cycle 0 is to=0. This is the epoch of our theory. With an epoch 
to=0 and period P=1, we can calculate the computed times Cn for any cycle n. Since we 
are using the same theory, epoch, and period for every clock, the computed times Cn will 
be the same for each; they are listed in Table 13.1 on the next page. Also listed in Table 
13.1 are the observations, the actual times at which each clock read “noon.” For each 
observation, we have listed both the clock time and the time in days since the experiment 
began (which is what we will use to compute O–C). 
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================================================================= 
Table 13.1 

 
Computed and observed times of “noon” for six clocks 

 
Observed Time 

 
Cycle   Computed Clock #1 Clock #2 Clock #3 Clock #4 Clock #5 Clock #6 
========================================================================= 
0 12:00p 12:05p 12:00p 11:58a 12:00p 12:00p 

0  0 .0035  0 -.0014  0  0 
======================================================================== 
1 12:00p 12:05p 12:03p 11:58a 11:58a 12:00p 

1  1 1.0035 1.0021 0.9986 0.9986  1 
======================================================================== 
2 12:00p 12:05p 12:06p 11:58a 11:56a 12:01p 

2  2 2.0035 2.0042 1.9986 1.9972 2.0007 
======================================================================== 
3 12:00p 12:05p 12:09p 11:58a 11:54a 12:03p 

3  3 3.0035 3.0062 2.9986 2.9958 3.0021 
======================================================================== 
4 12:00p 12:05p 12:12p 12:37p 11:52a 12:06p 

4  4 4.0035 4.0083 4.0257 3.9944 4.0042 
======================================================================== 
5 12:00p 12:05p 12:15p 12:37p 11:50a 12:10p 

5  5 5.0035 5.0104 5.0257 4.9931 5.0069 
======================================================================== 
6 12:00p 12:05p 12:18p 12:37p 11:51a 12:15p 

6  6 6.0035 6.0125 6.0257 5.9938 6.0104 
======================================================================== 
7 12:00p 12:05p 12:21p 12:37p 11:52a 12:21p 

7  7 7.0035 7.0146 7.0257 6.9944 7.0146 
======================================================================== 
8 12:00p 12:05p 12:24p 12:37p 11:53a 12:28p 

8  8 8.0035 8.0167 8.0257 7.9951 8.0194 
======================================================================== 
9 12:00p 12:05p 12:27p 12:37p 11:54a 12:36p 

9  9 9.0035 9.0188 9.0257 8.9958 9.0250 
======================================================================== 
================================================================= 
 
We see that Clock No. 1 fits our theory: when it reads noon, it actually is noon. Clock 
No. 2 is late, not reading noon until 12:05pm every day. Clock No. 3 is slow: it indicates 
“noon” 3 minutes later every day. Clock No. 4 is a little early until day 4, and a lot late 
after that. Clock No. 5 at first runs fast, marking “noon” two minutes earlier each day, 
until day 6; from then on it runs slow, marking “noon” a minute later every day. Clock 
No. 6 is not only slow, it is getting slower every day. It is easy to translate these into O–C 
values simply by subtracting C from O; these are listed in Table 13.2. We have used them 
to plot O–C diagrams in Figures 13.1a–f. 
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======================================================== 
Table 13.2: O–C Values for Six Clocks 
 
Cycle 
Number  Clock#1 Clock#2 Clock#3 Clock#4 Clock#5 Clock#6 
 

0 0 .0035  .0000 -.0014  .0000 .0000 
1 0 .0035 .0021 -.0014 -.0014  .0000 
2 0 .0035 .0042 -.0014 -.0028 .0007 
3 0 .0035 .0062 -.0014 -.0042 .0021 
4 0 .0035 .0083 .0257 -.0056 .0042 
5 0 .0035 .0104 .0257 -.0069 .0069 
6 0 .0035 .0125 .0257 -.0062 .0104 
7 0 .0035 .0146 .0257 -.0056 .0146 
8 0 .0035 .0167 .0257 -.0049 .0194 
9 0 .0035 .0188 .0257 -.0042 .0250 

======================================================== 
 
 
 
The first diagram (Clock No. 1, Figure 
13.1a) shows what O–C looks like when 
our theory is exactly correct. All the O–C 
values are zero, because theory matches 
observation. 
 
In the next diagram (Clock No. 2, Figure 
13.1b), the O–C values still fall on a 
straight line parallel to the x-axis. 
However, they are all “off,” by the same 
amount. Clock No. 2 keeps good time (it 
indicates noon at the same time every 
day), but it is a little late. In this case the 
theory is correct: it is perfectly periodic, 
and the period is correct in that it cycles in 
precisely 1 day; but the epoch is not 
correct—it is not “set” properly. It 
actually has its time of cycle zero at 
to=0.0035. So we have our first clue from 
an O–C diagram: when the O–C values 
lie on a straight line which is horizontal 
(parallel to the x-axis), but are all 
displaced from 0 by the same amount, 
the system is periodic, and our period is 
correct, but the epoch is wrong. 

Figures 13.1a (top) & 13.1b (bottom) 
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The next clock (Clock No. 3, Figure 
13.1c) keeps indicating “noon” later and 
later every day. In fact, it says “noon” 3 
minutes later each day. Clock No. 3 is 
just slow: instead of cycling in 1 day like 
a good clock should, it cycles in 1 day 3 
minutes = 1.0021 days. Our theory is still 
correct in that it appears to be perfectly 
periodic. Our epoch is also correct: cycle 
0 really did start at time 0. But the period 
is wrong: the true period is not P=1 day, 
but P=1.0021 days. This gives our next 
clue to look for in an O–C diagram: when 
the O-C values lie on a straight line, but 
the line is not horizontal, the system is 
periodic but our estimated period is not 
correct. 
 
The true period of Clock No. 3 is longer than the estimated period by 3 minutes = 0.0021 
day. If we draw a straight line through the O–C values in Figure 13.1c, that line has a 
slope of 0.0021 day/cycle. Now we have another clue from O–C: when the system is 
periodic but our period is not correct, the slope of the line through the O–C values is 
the difference between the true and estimated periods. In addition, the intercept of 
the line is the difference between the true and estimated epochs. 
 
Clock No. 4 (Figure 13.1d) was 2 minutes early until day 4, after which it was 37 minutes 
late. It kept good time most days, cycling 
in 24 hours, except from day 3 to 4, when 
it took an extra 39 minutes. It turns out 
that someone unplugged Clock No. 4 for 
39 minutes between days 3 and 4. After 
that, the clock still has the correct period, 
but it is no longer set even close to being 
correct. In effect, it has been “re-set” by 
being turned off: the epoch has changed. 
Here is yet another clue from any “broken” 
line in an O–C diagram: when the O–C 
values leave one straight line, and start 
another with the same slope, but which 
is offset, the period has remained the 
same but the epoch has changed. 

Figure 13.1c 

Figure 13.1d 
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Clock No. 5 (Figure 13.1e) was fast 
through day 5, reading “noon” two 
minutes earlier every day. This is a case of 
O–C values following a straight but not 
horizontal line, so the period is not correct. 
During these first 5 days, the period was 2 
minutes less than a day, or 0.9986 day. 
From then on, Clock No. 5 cycled a 
minute later every day. The O–C diagram 
shows another straight line, with a 
different slope; this indicates a new period, 
which is 1 minute longer than a day, or 
1.0007 days. 
 
This gives us one of the most important clues to look for in O–C diagrams: when the   
O–C values change from one straight line to another which has a different slope, the 
period has changed. The slope of each line is the difference between its period and 
the estimated period. 
 
Clock No. 6 (Figure 13.1f) is running later 
and later every day, and not by the same 
amount. The first day it is fine, but the 
next day it loses 1 minute, then it loses 2 
minutes, then 3, etc. This clock is not 
perfectly periodic: its period is different 
every day. This also gives us one of the 
most important things to look for in O–C 
diagrams: when the O–C values do not 
follow a straight line, the system is not 
perfectly periodic. 
 
These simple clock examples illustrate 
how O–C diagrams reveal important 
changes in period and epoch. 
 
For real data, things are not always so simple. Many systems are not perfectly periodic. 
For Mira-type variables, for example, the period of each cycle is a little different, 
although the average period is stable. And for all real data, there are observational errors, 
no matter how precise the instrumentation. Now let us look at some real-life examples. 

Figure 13.1e 

 

Figure 13.1f 
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O–C Diagram Relationships 
 
Study the following O–C diagram for the Mira-type variable Z Tau (Figure 13.2). At 
first, the observed period is longer than the estimated period, so the O–C values get 
higher and higher. Later, the period shortens, so that near the end of the graph the O–C 
values are getting lower and lower. 
 

 
Figure 13.2 

 
 
At first glance, it appears that the period of Z Tau changed slowly but steadily, 
decreasing by the same amount every cycle. This is similar to the behavior of Clock No.6 
in our clock example. If this were the case, then the O–C values would fall along a 
parabola, which is plotted as a dashed line in Figure 13.3 on the following page. Upon 
closer examination, however, it is seen that a better explanation of Z Tau’s behavior 
might be two distinct changes in period. These are plotted as solid lines in Figure 13.3 on 
the following page. If this interpretation is correct, then each line segment represents a 
different period. For the first line, from cycle 4 to about cycle 20, the slope is positive, so 
the period is longer than the estimated period. For the second line, from about cycle 20 to 
about cycle 50, the slope is also positive, but much smaller; again, the period is longer 
than the estimated period, but only slightly. For the last line, from about cycle 50 to the 
end, the slope is negative, so the period is less than the estimated period.The O–C 
diagram shows three different periodicities for Z Tau, with the observed maxima 
occuring from ~240 days earlier than calculated to ~140 days later than calculated. 
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More detailed statistical inspection of the graph shows that the O–C values fit the three 
straight lines better than they fit the parabola. So the data indicate that Z Tau has indeed 
shown three distinct periods, represented by the three straight lines, rather than a 
smoothly-changing period indicated by the dashed line. 
 
It is also worth noting that the O–C values lie near to, but not exactly on, straight lines. 
This is to be expected; all real data have random errors. Also, the period of Z Tau may 
actually be a little different from cycle to cycle, although the average period seems to be 
constant over many cycles. 
 
 

 
 

Figure 13.3 
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Core Activity 13.2:  Understanding O–C with Miras 
 

 
The following O–C diagrams have been obtained by studying the long-term behavior of 
eight Mira-type variable stars. Study the O–C diagrams and describe the differences 
between the predicted and observed behaviors of these stars relative to epoch and/or 
period. 
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AAVSO Variable Star Astronomy – Chapter 13 

Core Activity 13.3:  Prediction of SS Cyg 
 

 
Look at the following light curve for the eruptive variable SS Cyg (Figure 13.4). Estimate 
the time of beginning of each eruption, the amplitude in magnitudes, and the duration in 
days. Predict the time of the next eruption. Access VSTAR to plot the observations for 
SS Cyg for JD 2449500 through 2449950. Does your predicted time for the next eruption 
agree with the actual time of outburst? 
 
 

 
 

Figure 13.4 
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Activity 13.4: Prediction and Observation of Delta Cep 
 

 
If you have observed delta Cep and determined your best estimate of the period by 
plotting a phase diagram, predict the times for the next few maxima. Observe delta Cep 
for the required amount of time and plot an O–C diagram for your predicted and observed 
results. If the diagram shows all of your O–C data points clustered near the 0 line on your 
graph, then your period determination was accurate. If you continued to observe delta 
Cep and noticed any changes, then the reason would be that delta Cep’s period was 
changing. 
 
It would be helpful at this point to write a general formula which would predict the times 
of maxima for delta Cep. This type of formula is called an ephemeris (plural: 
ephemerides) of the stars. With the formula, write a calculator or computer program to 
calculate the predicted times of maxima. You could write the program so that it only 
produces times of maxima which occur between 9:00 PM and midnight, standard time, at 
your location; you could also incorporate the decimal portion of the JD which 
corresponds to these times in your formula. 
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Universal Models 
 
Cosmology is the study of the origin, evolution, and large-
scale structure of the universe. Cosmological models are 
possible representations of the universe in simple terms. A 
basic assumption of cosmology is the cosmological principle. 
The principle states that there are no preferred places in the 
universe, that the universe is isotropic and homogenous. 
Isotropy is the property by which all directions appear 
indistinguishable to an observer expanding with the universe. 
In other words, neglecting local irregularities, measurements 
of the limited regions of the universe available to Earth-based 
observers are valid samples of the whole universe. Models are 
an essential link between observation and theory and act as the 
basis for prediction. A simple model for a two-dimensional 
universe is the surface of an expanding balloon, on which may 

be demonstrated Hubble's Law and the isotropy of the microwave background radiation, the heat left over 
from the explosion that initiated the universe. 
 
Most standard cosmological models of the universe are mathematical and are based on the Friedmann 
universe, which assumes homogeneity and isotropy of an expanding (or contracting) universe in which the 
only force that need be considered is gravitation. The big bang theory is such a model. These models result 
from considerations of Einstein's field equations of general relativity. When the gravitational force is 
negligible, the equations reduce to (dR/dt)2/R2 + kc2/R2 = (8/3)Gρ for energy conservation. This is known 
as the Friedmann equation, and ρR3 is constant for mass conservation. R is the cosmic scale factor, ρ the 
mean density of matter, G the gravitational constant, and c the speed of light; k is the curvature index of 
space with values of +1 (closed universe in which the expansion stops, the universe contracts, and ends 
with a big crunch), –1 (open universe in which the expansion constantly slows down but never stops), or 0 
(flat or Einstein-de Sitter universe.) Other models involving the cosmological constant, Λ, have been 
proposed, such as the de Sitter model, in which no mass is present; the Lemaitre model, which exhibits a 
coasting phase during which R is roughly constant; the steady-state theory for an unchanging universe; and 
those in which the gravitational constant, G, varies with time (Brans-Dicke theory). The cosmological 
constant is an arbitrary constant. Although it is possible for it to have any value that does not conflict with 
observation, it is highly probable that it is close to zero. Cosmological models involving Λ are considered 
nonstandard. In the standard (Friedmann) models, Λ = 0. 
 
The Brans-Dicke theory is a relativistic theory of gravitation and a variation of Einstein's general theory of 
relativity. It is considered by many astronomers to be the most serious alternative to general relativity. 
Newton's gravitational constant is replaced by a slowly varying scalar field. The effect is to allow the 
strength of gravity to decrease with time. In the limit that this variation is zero, the various Brans-Dicke 
theories of gravitation that now exist reduce to Einstein's general relativity. Current observations limit the 
variation of Newton's gravitational constant to be less than one part in 1010 per year. This means that for 
local applications of a non-cosmological nature, the Brans-Dicke theory is indistinguishable from general 
relativity. Another model of the early universe is the inflationary universe proposed by Alan Guth in 1980. 
This theory describes a possible phase in the very early universe when its size increased by an 
extraordinary factor, perhaps by up to 1050, in an extremely short period. At an age of 10–35 seconds, the 
state of the universe had to change, as the electromagnetic and strong nuclear forces "froze out" into 
different values. The energy released by this phase change is calculated to have caused the universe to 
expand, or inflate, catastrophically. The inflationary phase ended at some time before 10–30 seconds. After 
this time, the inflationary model coincides with the standard big bang description of the universe. The 
inflationary phase means that the observed universe is only a very small fraction of the entire universe. In 
addition, distant parts of the universe would have been much closer in the period before inflation than has 
been previously considered. The theory can explain the isotropy of the microwave background radiation, 
which requires distant parts of the universe to have been in causal contact in the past. 

Frame Dragging – illustration courtesy  
of the Gravity B Probe 
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In the solution for Einstein's equations for extreme curvature of spacetime, a passage can exist between two 
universes or between two parts of the same universe. This structure is called an Einstein-Rosen bridge, or 
wormhole. Such bridges theoretically can occur in black holes for brief moments in time. Just before or just 
after that moment, there is no passage, only the singularity of the black hole. If you tried to race through the 
wormhole in the instant it opened at anything less than the speed of light, the wormhole would snap shut, 
trapping you and sending you into the singularity to be torn into subatomic particles, fried by radiation and 
crushed to infinite density. One solution to holding the wormhole open is what physicists refer to as "exotic 
matter." Ordinary matter has finite energy and exerts finite pressure and creates a normal, pulling, 
gravitational field. The opposite would be matter that has negative energy and exerts negative pressure to 
such an extreme level that it would produce "antigravity." Whereas ordinary matter pushes outward with 
pressure and pulls inward with gravity, exotic matter would pull inward with its pressure and push outward 
with its gravity. This concept would be similar to the inflationary universe 
theory. During the inflationary phase the universe underwent a rapid expansion 
that led to its current size and smoothness. The condition responsible for 
inflation is known as a false vacuum. This was the brief state of the universe 
when the electromagnetic and nuclear forces were indistinguishable from one 
another. Although not exotic matter, the false vacuum exerted a negative 
pressure and a repulsive gravitational field. The exotic matter necessary to create 
a stable wormhole would have to display the same characteristics as the false 
vacuum, but to a much larger degree. An Einstein-Rosen bridge could be coated 
with exotic matter and stabilized, maybe even become permanent. 
 
What would a wormhole look like? It might appear spherical from the outside. The boundary would not 
necessarily look black, like a black hole, even though the outer structure of their spacetime geometries is 
similar. A black hole has an event horizon from which nothing can escape. However, you can see through a 
wormhole to the outside at the opposite end. Upon entering you would travel to the center of the sphere and 
eventually find yourself traveling away from the center, to emerge in another place outside of the 
wormhole. Inside the wormhole, you would be able to see light coming in from the normal space at either 
end of the wormhole; however, the view to either side would be distorted. The space is extremely curved. 
Light heading off in any direction perpendicular to the `radius' through the center of the wormhole would 
travel straight in the normal space inside, but end up back where it started, like a line drawn around the 
surface of a sphere. If you faced sideways in a wormhole you could, in principle, see the back of your head. 
However, the light would be distorted and your view out of focus. You would not be able to see stars 
through the sides of the tunnel because there is no literal tunnel wall and inside the light is trapped by the 
extreme curvature of space. You would not be able simply to travel through the mouth of the tunnel. It is 
not shaped like a funnel as represented in the two-dimensional models of the three-dimensional space 
around a wormhole drawn above. In these models, a circle in two-dimensional space is the analog of a 
sphere in three-dimensional space, and the real curved space around a wormhole is represented by a 
stretched two-dimensional space that resembles a funnel. You would not be able to travel through the 
mouth of the funnel. The funnel is a three-dimensional hyperspace in the two-dimensional analog. You 
would have to crawl along the surface of the two-dimensional space to get the true meaning of the nature of 
that space and some feeling for the three-dimensional reality. Another consideration for wormholes is 
Hawking radiation. Stephen Hawking's calculations show that in the space near the event horizon of a black 
hole, natural radiation is emitted which eventually leads to the evaporation of the black hole. In a 
wormhole, the Hawking radiation from one end of the wormhole can travel through normal space to the 
other end, enter, travel straight through, and emerge just as it left. Now there is twice as much radiation. 
This cycle could repeat endlessly, building up an infinite energy density which would either seal off the 
wormhole or prevent it from having existed in the first place. 
 
So far there is no grand unified theory in physics. The holy grail of physics is the quest for a theory which 
unifies the physics of extremely curved spacetime with the probabilistic nature of quantum mechanics. This 
theory is necessary to fully understand the nature of the singularity of a black hole, the origin of the 
universe, and the validity of other mathematical cosmological models such as Einstein-Rosen bridges. 
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Core Activity 13.5: Prediction and Analysis of the Period of R Cyg 
 

 
Access the VSTAR database and load the following observational data for R Cyg (Figure 
13.5) on your screen. Determine the times of maximum brightness by fitting a 
polynomial to the observations. Your instructor will give you the times of predicted 
maxima. Plot an O–C diagram and determine the difference between the predicted and 
observed behavior for R Cyg. What is the star’s behavior? Can you find any secondary 
relationships in the period of this pulsating red giant star? 
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Activity 13.6: O–C for Eclipsing Binary Stars 
 

 
You have studied pulsating variables, both short-period Cepheids such as delta Cep and 
long-period Miras such as V Cas. Now we will use O–C to study the behavior of an 
eclipsing binary star. Remember that for eclipsing binaries, it is the time of minimum 
brightness, rather than maximum, that is of most interest. This is because minimum 
corresponds to the middle of the eclipse, and the eclipse is what we are really interested 
in timing. In fact, a large number of variable star observers specialize in eclipsing binary 
stars, and design their observing programs to get accurate timings of the minimum 
brightness. Table 13.9 lists AAVSO data for the eclipsing binary star X Tri. Instead of 
containing magnitudes, it lists times of minima. 
 
Let’s construct an O–C diagram for the minima of X Tri. To do so, we need to estimate 
the period and the epoch. We will use the following values: 
 

Epoch:  to  = JD 2442502.721 
 
Period:  P = 0.975352 day 
 

Using this period and epoch, we can calculate the computed time Cn of any minimum.  
 
There are a lot of minima in Table 13.9 (on the following page). Your teacher will assign 
each of you a small number of cycles to compute. For the cycles assigned to you, take the 
cycle number n and use it to calculate the computed time of minimum Cn. When all the 
students have completed the cycles assigned to them, collect all the class data into a large 
table, listing cycle number n (from Table 13.9), observed time of minimum On (also from 
the Table 13.9), and your computed time Cn. 
 
Now subtract Cn from On, for each cycle, to get (O–C) n for every cycle n listed in the 
table. Finally, prepare an O–C diagram, showing cycle number n on the x-axis and O–C 
value on the y-axis. 
 
What can you tell about the behavior of X Tri from this O–C diagram? Are the estimated 
period and epoch correct? Did the period change? 
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Table 13.9 
Minima Timings of X Tri1 

 
Cycle2 JD (minimum)  Cycle2  JD (minimum)  Cycle2  JD (minimum) 
230  2442726.175  3197  2445608.722  5107  2447464.348 
318  2442811.668  3198  2445609.694  5108  2447465.310 
322  2442815.551  3233  2445643.695  5168  2447523.601 
523  2443010.832  3233  2445643.697  5169  2447524.576 
524  2443011.802  3508  2445910.867  5200  2447554.687 
524  2443011.806  3544  2445945.845  5202  2447556.637 
524  2443011.811  3619  2446018.711  5237  2447590.644 
557  2443043.863  3621  2446020.646  5238  2447591.611 
560  2443046.783  3621  2446020.649  5446  2447793.689 
564  2443050.666  3621  2446020.652  5447  2447794.661 
567  2443053.582  3622  2446021.618  5447  2447794.667 
945  2443420.818  3622  2446021.618  5448  2447795.639 
948  2443423.741  3622  2446021.620  5449  2447796.604 
952  2443427.615  3626  2446025.508  5477  2447823.805 
984  2443458.717  3659  2446057.567  5478  2447824.776 
985  2443459.687  3660  2446058.540  5481  2447827.690 
985  2443459.689  3690  2446087.686  5516  2447861.695 
1020  2443493.687  3725  2446121.692  5520  2447865.581 
1021  2443494.658  3934  2446324.737  5555  2447899.589 
1262  2443728.797  3936  2446326.679  5829  2448165.784 
1338  2443802.635  3974  2446363.599  5903  2448237.677 
1408  2443870.641  4003  2446391.772  5903  2448237.677 
1686  2444140.727  4004  2446392.745  5942  2448275.566 
1687  2444141.700  4008  2446396.633  6180  2448506.792 
1688  2444142.671  4042  2446429.665  6570  2448885.692 
1689  2444143.641  4044  2446431.605  6573  2448888.606 
1760  2444212.623  4078  2446464.635  6608  2448922.610 
1762  2444214.566  4079  2446465.612  6637  2448950.781 
1795  2444246.628  4322  2446701.688  6639  2448952.724 
1797  2444248.567  4354  2446732.781  6641  2448954.668 
1829  2444279.660  4356  2446734.726  6642  2448955.638 
2075  2444518.656  4358  2446736.671  6957  2449261.673 
2077  2444520.602  4389  2446766.785  7031  2449333.558 
2112  2444554.600  4391  2446768.728  7348  2449641.535 
2182  2444622.609  4397  2446774.559  7728  2450010.717 
2419  2444852.863  4432  2446808.560  7734  2450016.550 
2452  2444884.926  4668  2447037.839  7763  2450044.721 
2527  2444957.790  4740  2447107.788  7764  2450045.693 
2566  2444995.678  4741  2447108.761  7769  2450050.555 
2845  2445266.743  4742  2447109.735  7800  2450080.669 
2878  2445298.797  4742  2447109.735 
 
1Times of minima of X Tri are from AAVSO monographs Observed Minima 
Timings of Eclipsing Binaries, Nos. 1,2,3, prepared by M. Baldwin and G. 
Samolyk (1993, 1995, 1996). 
 
2Repeated cycles indicate times of minimum from different observers. 
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SPACE TALK 
 
Algol (beta Persei) is the brightest eclipsing binary in the sky, and the most famous of the 
eclipsing variable stars. Algol means “Demon Star” in Arabic, and this suggests that its 
strange variability might have been known in antiquity, although there is no concrete 
evidence to support this conjecture. The name is from the Arabic Al Ra’s al Ghul, which 
translates to “The Demon’s Head.” The Hebrews called the star “Satan’s Head.” In some 
other traditions, it is identified with the mysterious and sinister Lilith, the legendary first 
wife of Adam. Medieval astrologers considered Algol the most dangerous and unlucky 
star in the heavens. 
 
Although Algol’s name suggests that its light changes were known to the medieval 
Arabs, the first written account was made by the Italian astronomer Geminiano 
Montanari of Bologna in 1667. The English astronomer John Goodricke is credited with 
establishing the period of Algol in 1782. Goodricke proposed that the variation in Algol’s 
brightness was due to its being eclipsed by an unseen companion, possibly a planet. In 
1881, Edward Pickering, the Director of Harvard College Observatory, presented 
evidence which showed that Algol was an eclipsing binary star. 
 
One peculiar feature of the Algol system, shared by other binaries of the same type, is 
that the fainter and less massive star has evolved to the subgiant stage, while the primary 
star remains a main sequence object. This is a stellar evolutionary paradox, for if the stars 
are of the same age, the brighter and more massive star should evolve more rapidly. 
Binary stars form together from the same condensing cloud of gas and dust, and therefore 
have to be the same age. Astronomer Fred Hoyle suggested the following solution to the 
dilemma. The fainter star was originally the more massive and luminous of the pair. As it 
began its evolutionary expansion it lost great quantities of matter to the close companion. 
It thus became fainter as it evolved to the subgiant stage. At the same time the companion 
grew more brilliant as the result of its increased mass. This is now considered to be the 
case. Although Algol is the most studied eclipsing binary, high-resolution spectroscopy 
has only recently begun to reveal the details of its behavior. 
 
Algol is actually a three-star system 92 light-years away. The primary star is a bright B8 
main-sequence star. The primary is eclipsed every 2.87 days by the secondary star, a 
larger, dimmer, less massive K2 subgiant with a very active surface covered with 
starspots. The K2 subgiant and the B8 primary are in a very close orbit. In the distance a 
tertiary F1 main-sequence star orbits the binary pair every 1.86 years. Algol varies in 
magnitude from 2.1 at maximum to 3.4 at primary minimum, with a period of 2.87 days. 
The period is slowly lengthening due to the mass transfer of material between the two 
stars. The primary eclipse occurs when the fainter K2 secondary passes in front of the 
brighter B8 star, and lasts for ~10 hours. To us, the eclipse is a partial one, due to the 
angle from which we observe it. There is also a shallow secondary eclipse when the B8 
star passes in front of the K2 star. This can only be detected photoelectrically. The 
primary eclipse, however, can easily be detected with the unaided eye. 
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The K2 subgiant has expanded to fill its Roche lobe, a teardrop-shaped volume of space 
in which its gravity is strong enough to hold onto its loose atmospheric material. The tip 
of the teardrop shape points in the direction of the primary. As the K2 subgiant tries to 
expand further, a thin but powerful stream of gas spills from the point of the Roche lobe 
and crashes down onto the B8 primary star. A binary system such as this, in which one 
component has filled its Roche lobe and is transferring material to its companion, is 

called a semidetached 
binary. The speed of the 
stream of gas is 520 km/s 
when it slams into the B8 
star. The stream of gas, 
now heated to 100,000K, 
strikes the B8 star’s surface 
at a low angle and kicks a 
spray of gas forward and 
upward. This spray forms a 
variable, asymmetric 
accretion disk that circles 
the primary before settling 
onto the surface. The disk 
varies in size and shape, 

indicating that the gas stream varies also. The K2 star must overflow intermittently. If the 
B8 star were smaller, or if the stars’ separation were wider, there would be room for the 
formation of a permanent, stable accretion disk. Instead, the surface of the B8 star gets in 
the way. Algol-type binaries with orbital periods greater than 5 or 6 days do have room to 
acquire permanent accretion disks, but Algol itself revolves in only 2.87 days. 
 
Algol is a strong radio source. The radio emissions come from the hot corona, the layer of 
atmosphere directly above the photosphere surrounding the K2 star. The star probably 
rotates in step with its orbital period, generating a strong magnetic dynamo effect within 
the star, intense surface activity, and a strong radio-emitting corona. This was confirmed 
by very long baseline interferometry (VLBI), a method of simultaneously pointing 
several radio telescopes (widely separated by long distances) at an object. Radio 
astronomers also announced that the orbital plane of the close binary pair is oriented at a 
right angle to the orbital plane of the distant F1 star, contrary to theories relating to the 
formation of multiple star systems. Another study has reported the opposite—that all 
three stars lie in the same orbital plane. 
 
In September 1990, the second-brightest eclipsing binary was discovered, and it happens 
to be located in the same constellation. The star is 3rd magnitude gamma Persei. The 
eclipses of gamma Persei occur rarely—approximately every 14.67 years. The next 
eclipse is expected in April of 2005. However, the star will then be in superior 
conjunction with the Sun, and so will not be visible from Earth. (Objects are in superior 
conjunction when they are on the opposite side of the Sun from the Earth.) 
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Gamma Persei consists of a cool, giant G8 primary star in orbit with a hot, main- 
sequence A2 secondary. It is a composite-spectrum binary (also called a spectroscopic 
binary): spectroscopic analysis shows the presence of features from two different stars. 
The composite nature of the spectrum was recognized in 1897 by Antonia Maury at 
Harvard. Gamma Persei was resolved into its two components for the first time in 1973, 
and it was extensively analyzed in 1987. At this time it was predicted that the A2 star 
would pass behind the G8 star in the fall of 1990. The eclipse occurred on the evening of 
September 12th, and was recorded at several observatories. The secondary star “set” 
more or less vertically behind the giant star’s limb, so the eclipse was central, or behind 
the middle of the G8 star, and lasted for an entire week. The eclipse was 0.3 magnitude 
deep visually, so it was detectable—though certainly not conspicuous—with the unaided 
eye. Gamma Persei will not eclipse again for unaided-eye observers until November 
2019. 
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